El matemático polaco Waclaw Sierpinski introdujo este fractal en 1919. Partamos (iteración n=0) de la superficie de un triángulo equilátero de lado unidad. Seguidamente (iteración n=1) tomemos los puntos medios de cada lado y construyamos a partir de ellos un triángulo equilátero invertido de lado 1/2. Lo recortamos. Ahora (iteración n=2) repetimos el proceso con cada uno de los tres triángulos de lado 1/2 que nos quedan. Así que recortamos, esta vez, tres triángulos invertidos de lado 1/4. En la figura animada observamos hasta cinco iteraciones sucesivas. Si repetimos infinitamente el proceso obtendremos una figura fractal denominada triángulo de Sierpinski.
Podemos hacer construcciones semejantes al triángulo de Sierpinski en 3 dimensiones con tetraedros. @
Esta propiedad ha sido utilizada con astucia en ingeniería. Un ejemplo reciente son las antenas fractales. El diseño de antenas se ejecuta en gran medida por tanteo. Muchas antenas están compuestas por una distribución de pequeñas antenas. Si la distribución es regular, la antena presenta alto rendimiento y si es aleatoria ofrece robustez. Parece que un diseño fractal como el de la figura combina ambas propiedades. En el caso de un solo hilo, siguiendo una forma fractal, al doblar se consigue empaquetar más hilo en el mismo espacio y la forma dentada genera capacitancia e inductancia extra.
MUY INTERESANTE. QUE PROGRAMA HAY UTILIZADO PARA LA ITERACION?
ResponderEliminar